Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Lancet Glob Health ; 10(11): e1600-e1611, 2022 11.
Article in English | MEDLINE | ID: covidwho-2069829

ABSTRACT

BACKGROUND: In line with movement restrictions and physical distancing essential for the control of the COVID-19 pandemic, WHO recommended postponement of all neglected tropical disease (NTD) control activities that involve community-based surveys, active case finding, and mass drug administration in April, 2020. Following revised guidance later in 2020, and after interruptions to NTD programmes of varying lengths, NTD programmes gradually restarted in the context of an ongoing pandemic. However, ongoing challenges and service gaps have been reported. This study aimed to evaluate the potential effect of the programmatic interruptions and strategies to mitigate this effect. METHODS: For seven NTDs, namely soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis, trachoma, visceral leishmaniasis, and human African trypanosomiasis, we used mathematical transmission models to simulate the effect of programme interruptions on the dynamics of each of these diseases in different endemic settings. We also explored the potential benefit of implementing mitigation strategies, primarily in terms of minimising the delays to control targets. FINDINGS: We show that the effect of the COVID-19-induced interruption in terms of delay to achieving elimination goals might in some cases be much longer than the duration of the interruption. For schistosomiasis, onchocerciasis, trachoma, and visceral leishmaniasis, a mean delay of 2-3 years for a 1-year interruption is predicted in areas of highest prevalence. We also show that these delays can largely be mitigated by measures such as additional mass drug administration or enhanced case-finding. INTERPRETATION: The COVID-19 pandemic has brought infectious disease control to the forefront of global consciousness. It is essential that the NTDs, so long neglected in terms of research and financial support, are not overlooked, and remain a priority in health service planning and funding. FUNDING: Bill & Melinda Gates Foundation, Medical Research Council, and the UK Foreign, Commonwealth & Development Office.


Subject(s)
COVID-19 , Leishmaniasis, Visceral , Onchocerciasis , Schistosomiasis , Trachoma , Tropical Medicine , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Leishmaniasis, Visceral/epidemiology , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Onchocerciasis/prevention & control , Pandemics , Schistosomiasis/epidemiology , Schistosomiasis/prevention & control , Soil , Trachoma/epidemiology
2.
Nat Commun ; 12(1): 5412, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1406390

ABSTRACT

Emerging evidence suggests that contact tracing has had limited success in the UK in reducing the R number across the COVID-19 pandemic. We investigate potential pitfalls and areas for improvement by extending an existing branching process contact tracing model, adding diagnostic testing and refining parameter estimates. Our results demonstrate that reporting and adherence are the most important predictors of programme impact but tracing coverage and speed plus diagnostic sensitivity also play an important role. We conclude that well-implemented contact tracing could bring small but potentially important benefits to controlling and preventing outbreaks, providing up to a 15% reduction in R. We reaffirm that contact tracing is not currently appropriate as the sole control measure.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Contact Tracing/methods , Pandemics , COVID-19/diagnosis , COVID-19 Testing , Disease Outbreaks/prevention & control , Humans , Pandemics/prevention & control , Quarantine , SARS-CoV-2 , Sensitivity and Specificity , United Kingdom/epidemiology
3.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200274, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309692

ABSTRACT

The dynamics of immunity are crucial to understanding the long-term patterns of the SARS-CoV-2 pandemic. Several cases of reinfection with SARS-CoV-2 have been documented 48-142 days after the initial infection and immunity to seasonal circulating coronaviruses is estimated to be shorter than 1 year. Using an age-structured, deterministic model, we explore potential immunity dynamics using contact data from the UK population. In the scenario where immunity to SARS-CoV-2 lasts an average of three months for non-hospitalized individuals, a year for hospitalized individuals, and the effective reproduction number after lockdown ends is 1.2 (our worst-case scenario), we find that the secondary peak occurs in winter 2020 with a daily maximum of 387 000 infectious individuals and 125 000 daily new cases; threefold greater than in a scenario with permanent immunity. Our models suggest that longitudinal serological surveys to determine if immunity in the population is waning will be most informative when sampling takes place from the end of the lockdown in June until autumn 2020. After this period, the proportion of the population with antibodies to SARS-CoV-2 is expected to increase due to the secondary wave. Overall, our analysis presents considerations for policy makers on the longer-term dynamics of SARS-CoV-2 in the UK and suggests that strategies designed to achieve herd immunity may lead to repeated waves of infection as immunity to reinfection is not permanent. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/trends , Pandemics , SARS-CoV-2/pathogenicity , Basic Reproduction Number/statistics & numerical data , COVID-19/virology , Humans , United Kingdom/epidemiology
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200270, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309689

ABSTRACT

Contact tracing is an important tool for allowing countries to ease lockdown policies introduced to combat SARS-CoV-2. For contact tracing to be effective, those with symptoms must self-report themselves while their contacts must self-isolate when asked. However, policies such as legal enforcement of self-isolation can create trade-offs by dissuading individuals from self-reporting. We use an existing branching process model to examine which aspects of contact tracing adherence should be prioritized. We consider an inverse relationship between self-isolation adherence and self-reporting engagement, assuming that increasingly strict self-isolation policies will result in fewer individuals self-reporting to the programme. We find that policies which increase the average duration of self-isolation, or that increase the probability that people self-isolate at all, at the expense of reduced self-reporting rate, will not decrease the risk of a large outbreak and may increase the risk, depending on the strength of the trade-off. These results suggest that policies to increase self-isolation adherence should be implemented carefully. Policies that increase self-isolation adherence at the cost of self-reporting rates should be avoided. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Contact Tracing/statistics & numerical data , Models, Theoretical , Pandemics , Basic Reproduction Number/statistics & numerical data , COVID-19/transmission , COVID-19/virology , Communicable Disease Control/statistics & numerical data , Disease Outbreaks , Humans , SARS-CoV-2/pathogenicity
5.
Trans R Soc Trop Med Hyg ; 115(3): 213-221, 2021 03 06.
Article in English | MEDLINE | ID: covidwho-1087814

ABSTRACT

BACKGROUND: The COVID-19 pandemic has disrupted planned annual antibiotic mass drug administration (MDA) activities that have formed the cornerstone of the largely successful global efforts to eliminate trachoma as a public health problem. METHODS: Using a mathematical model we investigate the impact of interruption to MDA in trachoma-endemic settings. We evaluate potential measures to mitigate this impact and consider alternative strategies for accelerating progress in those areas where the trachoma elimination targets may not be achievable otherwise. RESULTS: We demonstrate that for districts that were hyperendemic at baseline, or where the trachoma elimination thresholds have not already been achieved after three rounds of MDA, the interruption to planned MDA could lead to a delay to reaching elimination targets greater than the duration of interruption. We also show that an additional round of MDA in the year following MDA resumption could effectively mitigate this delay. For districts where the probability of elimination under annual MDA was already very low, we demonstrate that more intensive MDA schedules are needed to achieve agreed targets. CONCLUSION: Through appropriate use of additional MDA, the impact of COVID-19 in terms of delay to reaching trachoma elimination targets can be effectively mitigated. Additionally, more frequent MDA may accelerate progress towards 2030 goals.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/organization & administration , Trachoma/epidemiology , Trachoma/prevention & control , Anti-Bacterial Agents/therapeutic use , Humans , Mass Drug Administration , Models, Theoretical , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Pandemics , SARS-CoV-2
6.
Clin Infect Dis ; 72(8): 1463-1466, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1066275

ABSTRACT

Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.


Subject(s)
COVID-19 , Tropical Medicine , Humans , Neglected Diseases/epidemiology , Pandemics , SARS-CoV-2
7.
Trans R Soc Trop Med Hyg ; 115(3): 222-228, 2021 03 06.
Article in English | MEDLINE | ID: covidwho-1031765

ABSTRACT

BACKGROUND: Progress towards elimination of trachoma as a public health problem has been substantial, but the coronavirus disease 2019 (COVID-19) pandemic has disrupted community-based control efforts. METHODS: We use a susceptible-infected model to estimate the impact of delayed distribution of azithromycin treatment on the prevalence of active trachoma. RESULTS: We identify three distinct scenarios for geographic districts depending on whether the basic reproduction number and the treatment-associated reproduction number are above or below a value of 1. We find that when the basic reproduction number is <1, no significant delays in disease control will be caused. However, when the basic reproduction number is >1, significant delays can occur. In most districts, 1 y of COVID-related delay can be mitigated by a single extra round of mass drug administration. However, supercritical districts require a new paradigm of infection control because the current strategies will not eliminate disease. CONCLUSIONS: If the pandemic can motivate judicious, community-specific implementation of control strategies, global elimination of trachoma as a public health problem could be accelerated.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/epidemiology , Communicable Disease Control/organization & administration , Trachoma/epidemiology , Trachoma/prevention & control , Humans , Mass Drug Administration , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Pandemics , Prevalence , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL